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Abstract

The topic of domination in graphs has a rich history, beginning with chess enthu-
siasts in the 1850s determining how many queens are necessary to dominate an entire
chessboard and continuing to current problems involving computer communication net-
works, social network theory, and other similar problems. We define a dominating set
of a graph G to be a set of vertices of G such that every vertex of G is either in the set
or adjacent to a vertex in the set. The domination number for a graph G is the size of
a minimum dominating set. Determining the domination number of graphs can prove
highly useful in solving many types of problems, and recent studies of dominating sets
reflect this.

We focus on describing various families of graphs in terms of bounds on the domi-
nation number. Although the computation of dominating sets for arbitrary graphs is
an NP-complete problem, it is possible to compute certain bounds on the domination
number for certain families of graphs. We examine families of graphs, specifically the
family of grids, and determine the bounds on domination number for these families. We
compare the domination numbers for the various classes of grids with other common
families of graphs.



1 Introduction to Domination

Our work focuses on the concept of domination in graphs, a topic that has been studied
extensively in recent decades. We begin with an overview of the relevant definitions along
with a series of examples.

First, we review a few graph theory basics that are relevant throughout our work. More
on the basics of graph theory can be found in [3], for instance. We define a graph G = (V, E)
as a pair of sets, with V the nonempty set of vertices of G, and E the set of edges between
distinct vertices of G. The cardinality of V , denoted |V |, represents the number of vertices
in G, while vertices u and v are adjacent if the edge uv is in E. Throughout our work we
consider only undirected simple graphs G = (V, E), that is, graphs with no direction on the
edges and at most one edge between each pair of vertices. We define the neighborhood of a
vertex v (also called the closed neighborhood of v), as the set of vertices consisting of v and
each vertex adjacent to v: N [v] = {v}∪{x ∈ V : vx ∈ E}. The degree of a vertex v, written
d(v), is defined as the number of edges incident with v. We denote the minimum degree of
G with δ(G). Also, we define d(u, v) as the distance between two vertices u and v in V .

A subset S of V is a dominating set if every vertex v ∈ V is dominated by some element
of S, that is, every v ∈ V is either an element of S or is adjacent to an element of S. The
domination number, γ(G) is the minimum cardinality of a dominating set S of V . Finally,
the graph G is c-dominated if for 0 < c ≤ 1, γ(G) ≤ c|V |. We use the concept of c-
domination throughout our work to describe the domination numbers for the graphs from
various families of graphs.

1.1 Applications of Domination in Graphs

The study of domination in graphs has historical roots as early as the 1850s when European
chess enthusiasts studied the problem of “dominating queens,” as described in [4]. These
enthusiasts worked to determine the minimum number of queens necessary so that every
square on a standard 8 × 8 chessboard is either occupied by a queen or can be directly
attacked by a queen, that is, every square is “dominated” by a queen. It was determined
that a minimum of five queens are needed, and this problem can be modeled by finding a
dominating set of five queens.

The mathematical study of dominating sets began in earnest in the 1960s, and since that
time, dominating sets have been used for many different applications. One of the families
of graphs we examine in detail is the family of graphs resembling grids, which we define in
more detail in Section 2. A practical application demonstrating the importance of domination
numbers in these grids utilizes grids to model city blocks. We let the vertices of the grid
represent street corners and the edges represent streets between corners. Then, for example,
consider the problem of determining how many police officers should be stationed across the
city on street corners so that every corner is visible to at least one officer. We assume that
each officer can view the corner on which they are stationed and each corner that is no more
than one street block away. The domination number of the grid representing the city would
provide the minimum number of police officers necessary so that each corner is visible to
at least one officer. Finding a minimum dominating set would provide a description of the
street corners where officers should be stationed in order to accomplish this. Clearly many



other factors would need to be considered if a city were trying to solve such a problem, but
dominating sets could serve as an important tool for decision makers.

Dominating sets can be used to model many other problems, including many relating to
computer communication networks, social network theory, land surveying, and other similar
issues. Determining the domination number for graphs and finding minimum dominating
sets could thus prove very useful. However, finding the domination number of a general
graph G is an NP-complete problem [2]. Our work focuses on examining certain families of
graphs and finding the exact domination numbers for the graphs from these families.

1.2 Domination in Common Families of Graphs

We start by considering a few examples of domination in common families of graphs. Through-
out our work, we focus on families of graphs with relatively small bounds on the domination
number. For example, consider the family of complete graphs. A complete graph Kn on n
vertices is a graph in which each vertex is adjacent to every other vertex, that is, for every
vertex v ∈ V , d(v) = n− 1. We see by inspection that for all complete graphs, γ(Kn) = 1,
since each vertex v ∈ V dominates itself and its n − 1 neighbors. Thus the set D = {v}
dominates the entire graph. Hence, we see that for a complete graph Kn, γ(Kn) = 1

n
|V | = 1,

and so we say Kn is 1
n
-dominated. In Figure 1, we see a complete graph on 6 vertices with

a domination number of 1. In this figure, as well as the remaining figures throughout our
work, we use grey vertices to represent the vertices in the dominating set D.

W5K6 K2,3

u

v

Figure 1: Minimum dominating sets for the graphs K6, W5 and K2,3

Another family of graphs with a constant domination number of 1 is the family of wheel
graphs. A wheel graph Wn is a graph with n ≥ 4 vertices that contains a cycle of length
n− 1 and a central vertex v that is not in the cycle but that is adjacent to every vertex in
the cycle. Since v is adjacent to every other vertex in Wn, it is clear that v dominates the
entire graph. Thus, for all n ≥ 4, γ(Wn) = 1

n
|V | = 1, and so Wn is also 1

n
-dominated. We

see the wheel graph W5 in Figure 1.
Next, consider the family of complete bipartite graphs, that is, graphs in which the

vertices can be partitioned into two disjoint subsets U and V , so that each edge connects
a vertex from U to V , and every vertex in U is adjacent to every vertex in V . For all
complete bipartite graphs Kn,m with n,m ≥ 2 (where U contains n vertices and V contains
m vertices), we see by inspection that γ(Kn,m) = 2, since any vertex u ∈ U dominates each
of its m neighbors in V and any vertex v ∈ V dominates its n neighbors in U . We have



then that Kn,m is 2
n+m

-dominated, since γ(Kn,m) = 2
n+m

|V | = 2. For example, consider the
complete bipartite graph K2,3 in Figure 1.

We see that in these three families of graphs, the domination number is constant in
relation to n. In contrast, for a general graph G with minimum degree 1 on n vertices, it
has been proven that G is 1

2
-dominated [6], so that the bound on the domination number

of G increases linearly with n. For the families of graphs that we examine throughout the
remainder of our work, the domination number will also increase with n, though we will
prove that the bound on the domination number is significantly less than the general bound
for graphs with minimum degree 1.

1.3 Domination in Graphs with Minimum Degree Two

The domination number for graphs with minimum degree two has been explored by William
McCuaig and Bruce Shepherd and proven in [5]. The result provides a bound on the domi-
nation number of such graphs with only seven exceptions (details on the exceptional graphs
can be found in the original paper [5]).

Theorem 1.1. (McGuaig and Shepard [5]) If G = (V,E) is a connected graph with minimum
degree greater than or equal to 2 (δ(G) ≥ 2) and G is not a graph of type B of exceptional
graphs, then γ(G) ≤ 2

5
|V |.

Thus with this result, we see that if a graph G is connected and contains no vertices of
degree 1, and is not one of the seven “bad” graphs in B, the bound on domination number
is 2

5
|V |.

2 Domination in Grids

We consider the family of grid graphs, a family of graphs with minimum degree 2 but which
has bounds on domination number lower than the general bound given in Theorem 1.1.

2.1 Definition of Grids

For the remainder of our work, we look at the class of grid graphs, and we determine
bounds on the domination number based on the size of the grid. Such graphs resemble
two-dimensional grids and can be used to model things as important as city blocks, and
therefore could be used in applied problems related to city congestion and/or traversal of
streets. In formal terms, a two-dimensional grid graph is an m × n graph G(m × n) that
is the graph Cartesian product of two paths of length m and n, respectively. Rather than
explaining the technical definition of the graph Cartesian product, we explain through an
example. Figure 2 illustrates the 3 × 5 grid G(3 × 5) on 15 vertices, which is the graph
Cartesian product of the path of length 3 and the path of length 5, respectively.

For the purposes of this paper, we define several classes of vertices in relation to grids.
Let a corner vertex be defined as one of the four vertices of degree two that occurs in the
first or the n-th columns of a grid. We define an outside vertex as one of the vertices of



Figure 2: The grid G(3× 5)

degree three that occurs in the first or the n-th columns of a grid, or in the first or m-th
rows of the grid. We define an inside vertex as one of the vertices of degree four that occurs
in the second through (n− 1)-st columns or the second through (m− 1)-st rows of the grid.

2.2 The Case of G(2× n)

Consider grids of size 2 × n on 2n vertices, that is, all grids with two rows and n columns
(or, equivalently, n rows and two columns). We will prove that the graph G(2 × n) has
domination number

γ(G(2× n)) =

⌈
n + 1

2

⌉
.

Our technique is to show that the expression provides both an upper and a lower bound.
The upper bound argument is constructive, while the lower bound will require a more tech-
nical proof.

Lemma 2.1. The graph G(2× n) has domination number satisfying

γ(G(2× n)) ≤
⌈

n + 1

2

⌉
.

Proof. We give an explicit construction of a set of vertices that dominate the graph G(2×n)
and meet the bound. We break into cases depending on whether n is even or odd.

Case 1: n is even.
Let D be a subset of V such that D contains one vertex in each odd-numbered column k,

alternating between the first and second rows, and one vertex in the n-th column, as seen in
Figure 3. That is, if D contains the vertex in the first column in the second row, then D also
contains the vertex in the third column in the first row, and the vertex in the fifth column in
the second row, and so forth, as well as one vertex in the n-th column in either row. Then,
D contains exactly n

2
+1 =

⌈
n+1

2

⌉
vertices. Let D1 be the subset of D containing all vertices

of D except the vertex in the n-th column, so that |D1| = n
2
. For each pair of vertices u

and v in D1, d(u, v) > 2, so that N [u] ∩ N [v] = ∅, and each vertex in V is adjacent to no
more than one vertex in D1. The subset D1 contains one corner vertex in G that dominates
itself and its two neighbors, while all other vertices in D1 are of degree three and dominate
themselves and their three neighbors. So, D1 dominates

(n

2
− 1

)
4 + (1 · 3) = 2n− 4 + 3 = 2n− 1



vertices in G. Then, D1 dominates the first n−1 columns of G, which contain 2(n−1) = 2n−2
vertices, as well as one of the vertices in the n-th column of G. Now, let w be the vertex in
D in the n-th column. We see that w dominates both itself and the other vertex in the n-th
column, so that D = D1 ∪ {w} dominates G.

k = 5 k = 9k = 1
k = 3 k = 7 k = 11

k = 12k = 5 k = 9k = 1
k = 3 k = 7 k = 11

G(2× 11) G(2× 12)

Figure 3: Minimum dominating sets for the grids G(2× 11) and G(2× 12)

Case 2: n is odd.
Let D be a subset of V such that D contains one vertex in each odd-numbered column

k, alternating between the first and second rows, as above and as seen in Figure 3. Then,
D contains exactly n+1

2
vertices. Note that when n is odd, n+1

2
=

⌈
n+1

2

⌉
. Again, for each

pair of vertices u and v in D, d(u, v) > 2, so that N [u] ∩N [v] = ∅, and each vertex in V is
adjacent to no more than one vertex in D. Since D contains two corner vertices in G and
all other vertices in D are of degree three, D dominates

(
n + 1

2
− 2

)
4 + (2 · 3) = 2(n + 1)− 8 + 6 = 2n + 2− 8 + 6 = 2n

vertices. But G contains exactly 2n vertices, and so D dominates G.

By the case analysis above, it follows that γ(G(2× n)) ≤ ⌈
n+1

2

⌉
.

Lemma 2.2. The graph G(2× n) has domination number satisfying

γ(G(2× n)) ≥
⌈

n + 1

2

⌉
.

Proof. We will prove that no set with less than
⌈

n+1
2

⌉
vertices can dominate G. Suppose to

the contrary that D is a minimum dominating set with fewer than
⌈

n+1
2

⌉
vertices.

Case 1: n is odd.
We are assuming that |D| < ⌈

n+1
2

⌉
, and since n is odd, it follows that |D| ≤ ⌈

n−1
2

⌉
= n−1

2
.

All vertices in G have degree of either two or three, so that each vertex in D dominates at



most itself and three adjacent vertices. Hence, the number of dominated vertices, dom(D)
satisfies

dom(D) ≤ n− 1

2
+ 3

(
n− 1

2

)
=

n− 1

2
+

3n− 3

2
=

4n− 4

2
= 2n− 2.

But G(2× n) has 2n vertices, and so D cannot dominate G.

Case 2: n is even.
We are assuming that |D| <

⌈
n+1

2

⌉
, and since n is even, it follows that |D| ≤ n

2
. All

vertices in G have degree of either two or three, so that each vertex in D dominates at most
itself and three adjacent vertices. Hence, the number of dominated vertices, dom(D) satisfies

dom(D) ≤ n

2
+ 3

(n

2

)
=

n

2
+

3n

2
=

4n

2
= 2n.

This bound is met if and only if each vertex in D is of degree three and the neighborhoods of
the vertices in D are all disjoint. However, if D contains only vertices of degree three, then
in order to dominate all four corners, both vertices in the 2nd column and both vertices in
the (n− 1)-st column must be in D, contradicting the disjoint neighborhoods of vertices in
D. Thus, D cannot dominate G with |D| < ⌈

n+1
2

⌉
.

By the case analysis above, it follows that γ(G(2× n)) ≥ ⌈
n+1

2

⌉
.

Theorem 2.3. The graph G(2× n) has domination number satisfying

γ(G(2× n)) =

⌈
n + 1

2

⌉
.

Proof. Follows immediately from Lemmas 2.1 and 2.2.

Thus, the domination number of grids G(2 × n) is approximately n
2

= |V |
4

, which is
significantly less than the bound proven for general graphs with minimum degree 2. We will
see that this is true even with larger grids G(3× n) and G(4× n).

As we consider grids G(m × n) with m > 2, we quickly see that proving bounds on the
domination number of these grids becomes far more complicated than in the case of G(2×n).
In fact, we will only provide bounds for the cases of G(3× n) and G(4× n). These bounds
and the techniques used in proving them could potentially be used to provide bounds for
grids G(m× n) with m ≥ 5, but we will not examine these cases in detail.

2.3 The Case of G(3× n)

We consider grids of the form 3× n on 3n vertices and prove that graphs of this form have
domination number satisfying

γ(G(3× n)) =

⌈
3n + 1

4

⌉
.



We use the same technique as with 2×n grids, first providing a construction of a dominating
set for G(3× n), and then a more technical proof using strong induction on n to prove that
no set with fewer than

⌈
3n+1

4

⌉
vertices can dominate G(3× n).

Lemma 2.4. The graph G(3× n) has domination number satisfying

γ(G(3× n)) ≤
⌈

3n + 1

4

⌉
.

Proof. We will give an explicit construction of a set of vertices that dominates the graph
G(3×n) and meets the bound. Figure 4 shows such a construction for grids G(3×1) through
G(3× 9).

Figure 4: Minimum dominating sets for the grids G(3× 1) through G(3× 9)

For grids with n ≤ 5 the constructions in Figure 4 suffice. As we consider a general
construction for grids with n > 5, we refer to the configuration of vertices in D in the
construction of the dominating set for G(3×5), as seen in Figure 4. The idea for larger grids
is to repeat this pattern. By looking at the various congruence classes for n modulo 4, it is
not difficult to obtain the lower bound of the lemma.

Lemma 2.5. The graph G(3× n) has domination number satisfying

γ(G(3× n)) ≥
⌈

3n + 1

4

⌉
.

Proof. The proof technique is strong mathematical induction, followed by a careful case
analysis. We only provide an overview of the proof, and refer the reader to [7] for the
details of the argument. The strong mathematical induction is on n, the length of the grid.
That is, we use induction on n to show that γ(G(3 × n)) ≥ ⌈

3n+1
4

⌉
. First, we note that⌈

3n+1
4

⌉
= n− ⌊

n−1
4

⌋
.

Base case: n = 1.
We see by inspection that γ(G(3 × 1)) = 1 =

⌈
3(1)+1

4

⌉
, so that the bound holds for the

base case.



Inductive step:
Fix an n and suppose that for all values k less than or equal to n, γ(G(3×n)) ≥ ⌈

3n+1
4

⌉
=

n− ⌊
n−1

4

⌋
. We will prove that γ(G(3× (n + 1))) ≥

⌈
3(n+1)+1

4

⌉
=

⌈
3n+4

4

⌉
= n + 1− ⌊

n
4

⌋
.

Let G = G(3 × (n + 1)), and let D be a dominating set of G. Then D must dominate
a, b, and c, the vertices in the (n + 1)-st column, in addition to the remaining vertices in G.
We now consider the following cases as we consider how a, b, and c can be dominated.

Case 1: a, b, c 6∈ D.
In order for D to dominate a, b, and c, we have that d, e, f ∈ D. Consider G′ = (V ′, E ′) =

G\{a, b, c, d, e, f, g, h, i}, that is, consider the graph G′, obtained by removing the three right-
most columns from G, so that G′ = G(3 × (n − 2)), as seen in Figure 5. Now we consider
a set D′ that dominates G′. Let D′ be D ∩ V ′ plus all vertices u in the (n − 2)-nd column
of G such that u is dominated by some vertex v in the (n − 1)-st column. If there are m
such vertices u, we have that |D′| ≤ |D| − 3 − m + m = |D| − 3. Then, D′ dominates
G′ = G(3 × (n − 2)). By the inductive hypothesis, we know that |D′| ≥ (n − 2) − ⌊

n−3
4

⌋
.

Furthermore, we have that |D| ≥ |D′|+ 3 ≥ n + 1− ⌊
n−3

4

⌋ ≥ n + 1− ⌊
n
4

⌋
. Thus, the bound

holds in this case.

b

a

c

d

e

f

g

h

i

j

k

l

m

n

o

︸ ︷︷ ︸
G′

Figure 5: A G(3× (n + 1)) grid with a, b, c 6∈ D

Case 2: At least two of a, b, c are in D.
In this case, all three vertices are dominated by D. Deleting the last two columns of G

as in Case 1, we obtain a similar conclusion.

Case 3: Exactly one of a, b, c is in D.
This is the most difficult case in that we must consider two possibilities, either a ∈ D (or

c ∈ D) or b ∈ D, and each will require multiple subcases. However, the argument for each
case is very similar to the arguments given in Cases 1 and 2 above, and we omit the details.
So, by strong induction on n, we have thus shown that γ(G(3×n)) = n−⌊

n−1
4

⌋
=

⌈
3n+1

4

⌉
.

Theorem 2.6. The graph G(3× n) has domination number satisfying

γ(G(3× n)) =

⌈
3n + 1

4

⌉
.

Proof. Follows immediately from Lemmas 2.4 and 2.5.



We see then that G(3 × n), a graph on 3n vertices, is dominated by
⌈

3n+1
4

⌉
vertices,

so that G(3 × n) is approximately 1
4
-dominated. As with the families of graphs we have

previously examined, this is significantly lower than the 2
5

bound provided in Theorem 1.1.

2.4 The Case of G(4× n)

Before considering the general case of G(4×n), we consider the grid G(4×4). Two equivalent
patterns of vertices in a minimum dominating set for G(4× 4) are shown in Figure 6.

a b

Figure 6: Equivalent minimum dominating sets for the grid G(4× 4)

Proving that these sets dominate G(4 × 4) is straight-forward. Counting can then be
used to argue that no smaller sets can dominate and that these sets are, in fact, the only
minimum dominating sets. We state this precisely in the following theorem.

Theorem 2.7. The graph G(4 × 4) has domination number γ(G(4 × 4)) = 4. Moreover,
dominating sets given in Figure 6 are the only sets of size four that dominate G(4× 4).

Minimum dominating sets can be computed similarly for grids G(4×n) with n ≤ 10. We
used the software package Magma [1] to calculate the domination number for these grids,
and configurations of a minimum dominating set for each of these grids is shown in Figure 7.
We provide the following proof of the general case where n ≥ 10, using the configuration of
vertices in the grid G(4× 4) as a basis for the general construction.

Figure 7: Minimum dominating sets for the grids G(4× 1) through G(4× 10)



For all n ≥ 10, we can provide an explicit construction of a set of vertices D that
dominates the graph G = G(4×n) and meets the bound γ(G(4×n)) ≤ n. The idea is quite
simply to repeat the pattern given by a minimum dominating set for G(4 × 4) as shown in
Theorem 2.7. By considering cases on the congruence class of n modulo 4, one can easily
find patterns of vertices that dominate the grids.

To show that γ(G(4 × n)) ≥ n, we start with a minimal counter-example. That is, we
consider the minimum value k so that γ(G(4 × k)) < k. After a careful case analysis, this
leads to a contradiction, giving us our main result.

Theorem 2.8. For n ≥ 10, the graph G(4× n) has domination number satisfying

γ(G(4× n)) = n.

Since G(4 × n) is a graph on 4n vertices that is dominated by n vertices, we see that
G(4× n) is 1

4
-dominated. Thus, as with the case of G(2× n) and G(3× n), we see that the

domination number for grids G(4× n) is significantly less than the general bound provided
by Theorem 1.1.

3 Conclusion

We have identified several common families of graphs with domination numbers significantly
lower than the bound γ(G) ≤ 2

5
|V | for general graphs G with minimum degree 2. Though we

did not examine larger graphs of size G(m× n) with m ≥ 5, the techniques we used to find
the bounds for the smaller sizes of grids could be applied to find at least an upper bound for
the domination number of larger grids. For example, for a grid of size G(8× n), the pattern
used to provide a construction for a minimum dominating set of G(4×n) could be repeated
to create a construction of a minimum dominating set containing 2n vertices, thus proving
that γ(G(8× n)) ≤ 2n. However, we will not examine these larger grids further.

Table 1: Domination numbers of family of graphs

Family Notation Domination Number c

Graphs with δ(G) ≥ 1 G γ(G) ≤ |V |
2

1
2

Connected Graphs with δ(G) ≥ 2 G γ(G) ≤ 2
5
|V | 2

5

Complete Graphs (n ≥ 3) Kn γ(Kn) = 1 1
n

Wheel Graphs (n ≥ 4) Wn γ(Wn) = 1 1
n

Complete Bipartite Graphs (n,m ≥ 2) Kn,m γ(Kn,m) = 2 2
n+m

2× n Grids G(2× n) γ(G(2× n)) =
⌈

n+1
2

⌉ ∼ 1
4

3× n Grids G(3× n) γ(G(3× n)) =
⌈

3n+1
4

⌉ ∼ 1
4

4× n Grids (n ≥ 10) G(4× n) γ(G(4× n)) = n 1
4

Table 1 summarizes the different families of graphs we have examined, the domination
number associated with each family, and the value of c associated with each family indicating
that the family is c-dominated.



References

[1] Bosma, Wieb, Cannon, John, and Playoust, Catherine, The Magma algebra system. I.
The user language, J. Symbolic Comput., 24 (1997), 235265.

[2] Garey, Michael R., and Johnson, David S., Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company (1979).

[3] Goodaire, Edgar G, and Parmenter, Michael M., Discrete Mathematics with Graph The-
ory, 3rd edition, Pearson/Prentice Hall (2006).

[4] Haynes, Teresa W., Hedetniemi, Stephen T. and Slater, Peter J., Fundamentals of dom-
ination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol.
208, Marcel Dekker Inc., New York (1998).

[5] McCuaig, William and Shepherd, Bruce, Domination in graphs with minimum degree
two, J. Graph Theory, 13:6 (1989) 749–762.

[6] Ore, O., Theory of Graphs. American Mathematical Society, Colloquium Publications
Vol. 38, American Mathematics Society, Providence, RI (1962).

[7] Snyder, Kelsie, c-Dominating Sets for Families of Graphs. Honors Thesis in Mathematics.
University of Mary Washington (2011).


